Mechanically Stable All Flexible Supercapacitors with Fracture and Fatigue Resistance under Harsh Temperatures (Adv. Funct. Mater. 35/2022)
نویسندگان
چکیده
Flexible Supercapacitors In article number 2205708, Lunhui Guan and co-workers fabricate a mechanically stable all flexible supercapacitor by in-situ electrode growth. The device presents electrochemical property with device-level fracture fatigue resistance. This versatile its integrated functional units can be employed as sensor system under harsh environments.
منابع مشابه
Metamaterials: Snapping Mechanical Metamaterials under Tension (Adv. Mater. 39/2015).
By exploiting snap-through instabilities, D. Pasini and co-workers design a damage-tolerant mechanical metamaterial that snaps sequentially under tension, thereby accommodating a very large deformation up to 150%. On page 5931, they describe how the nonlinear mechanical response of the metamaterial can be robustly programmed by tuning the architecture of its unit cell.
متن کاملThermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock
Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming p...
متن کاملThermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock
Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Functional Materials
سال: 2022
ISSN: ['1616-301X', '1616-3028']
DOI: https://doi.org/10.1002/adfm.202270200